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We describe a Monte Carlo approach to the determination of the relative stability of two phases, which is
conceptually direct, potentially rather general, and particularly well suited to parallel computers. The approach
exploits the information contained in the frequencies of the transitions between the macrostates of the order
parameter distinguishing the two phases. The transition frequencies are observed in simulations initiated from
macrostates with order-parameter values intermediate between those of the two phases; they are used to
provide estimators of the macrostate transition probability matrix and thence estimators of the sampling
distribution itself. The procedure allows one to construct a series of sampling distributions, weighted with
respect to the canonical distribution, which approach the multicanonical limit, flat across order-parameter
space. It entails only simulations that are short compared to the~multicanonical! relaxation time of the order
parameter. Reweighting the transition-probability estimator of the multicanonical sampling distribution pro-
vides a good estimate of the canonical distribution of the order parameter for any value of the conjugate field,
permitting the identification of the coexistence field in particular. The method is developed in the context of a
system of hard spheres with short-range attractive interactions, described by a square potential well, which
provides a simple model of the intercolloid depletion potential in colloid-polymer mixtures. In particular we
explore the phase diagram in the region in which studies by others, based on free energy evaluation by
thermodynamic integration, have shown the coexistence of two fcc solid phases of different densities.@S1063-
651X~96!08705-3#

PACS number~s!: 02.70.Lq, 05.70.Ce

I. INTRODUCTION

The problem of determining the phase behavior of a sys-
tem is arguablythe generic task of equilibrium statistical
physics. The problem is traditionally couched in the lan-
guage of thermodynamics@1#: one must calculate the free
energy of candidate phases, the phase of minimum free en-
ergy ~for given thermodynamic coordinates! being thermo-
dynamically favored. Such calculations are not readily ac-
complished: the free energy~essentially the partition
function! can virtually never be determined exactly for sys-
tems with interesting phase behavior. A variety of alternative
strategies exist. Variational approximations@2#, series expan-
sions @3#, and quasiharmonic approximations@4# provide
varying degrees of insight and reliability. However, it is clear
that if one desires a technique that is both generally appli-
cable and reliable~that is, has quantifiable uncertainties! one
must look to the Monte Carlo~MC! method, the standard
computational tool for dealing with many-body systems@5#.

In its most commonly implemented form@Boltzmann im-
portance sampling~BS!# the MC method allows one to gen-
erate a sequence~Markov chain! of microstates of the chosen
system, with the assurance that, far enough along the se-
quence~at MC times large compared to the ergodic time
over which the memory of the initial microstate is pre-
served!, microstates will appear in the sequence with the
equilibrium probabilities prescribed by the canonical Boltz-

mann form. In principle this standard MC framework allows
one to address the problem of phase structure immediately
and transparently, without the need to appeal explicitly to the
concept of a free energy at all: the favored phase should be
identified simply, in the simulation as in nature, by the mac-
rostates that dominate once the initial transient process
~‘‘equilibration’’ ! is complete. In practice, however, this
simplistic approach founders because the MC procedure is
plagued by long ergodic times near phase boundaries, so that
the simulations remain trapped in the phase~group of mac-
rostates! favored by the choice of initial state. This problem
is actually a reflection of the very faithfulness with which the
standard MC procedure realizes the canonical distribution:
paths linking the groups of macrostates associated with the
two phases have Boltzmann weights that are exponentially
small in the system size, implying exponentially large
interphase-crossing times. If, then, one wishes to operate
within the BS framework one is forced to dealseparately
with the two phases~and to resort to the language of free
energies!. Even then, the problem remains awkward@6#. BS
methods yield good estimators of canonical expectation val-
ues such as the energy as simple averages over the sampled
states; however, while the free energy can be expressed in
terms of a canonical expectation value, this expectation value
is estimated unacceptably poorly by BS~see, for example,
the discussion in@7#!. If one is to use BS techniques one
must perform a series of independent simulations to measure
the energy ~or some component thereof!, along some
path—in either thermodynamic coordinate space or in the
space of model parameters—which links the system of inter-
est to some reference system, whose free energy is known
analytically or has been estimated in some prior calculation.
The free energy of the system can then be determined by
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integrating the energy along the simulation path. These inte-
gration methods~IM’s ! are commendably simple to imple-
ment and have become the standard basis for MC measure-
ment of free energies. Nevertheless, perhaps because of
certain practical limitations of the method~which we shall
touch on in Sec. VI! or more probably because of the general
conviction that such an important problem merits a some-
what more direct solution, there have been many attempts to
develop an alternative MC approach.

The recurring idea in such studies is that the solution
should be sought in some form of extended sampling, that is,
a MC procedure designed to sample from a distribution other
than the canonical form. The seminal contributions are prob-
ably those of Torrie and Valleau@8#; the most recent variants
are themulticanonical ensemble methodof Berg and Neu-
haus@9,10# and the relatedexpanded ensemble method~or
‘‘simulated tempering’’! of Lyubartsevet al. @11# and Mari-
nari and Parisi@12#. These techniques can be deployed in a
variety of ways. As described elsewhere@7#, they can be
developed to yield the absolute value of the free energy in a
single phase region. Alternatively~our focus of interest
here!, they may be used to assess directly the relative stabil-
ity of two competing phases. In either case the key issue~in
fact, if resolved fully, theonly issue! is how to constructa
sampling distribution tuned to the problem in hand. In par-
ticular, to address the competing-phase problem it is clear
that one requires a sampling distribution that is weighted
~with respect to the canonical form! so as to enhance the
likelihood of macrostates lying on the interphase path, that
is, values of the order parameter~M, say! intermediate be-
tween those associated with the two phases. In the multica-
nonical ideal@9,10# the sampling distribution is flat along the
interphase path.

Notwithstanding much recent activity, it seems fair to say
that existing techniques for evolving appropriate sampling
distributions are less than satisfactory. The typical strategy is
to make an initial guess for the weights required to secure a
multicanonical distribution and then to refine the guess. To
refine it one needs to estimate the implied sampling distribu-
tion, to determine the extent to which it fails to be multica-
nonical; it is customary to form that estimator, in the obvious
way, simply on the basis of a histogram of the macrostates
visited when one MC samples from it. Thisvisited-states
~VS! strategy provides only a somewhat crude and ponder-
ous basis for refining the weights to be attached to regions
that the sampling procedure has failed to visit. We have re-
cently introduced@7# an alternative strategy for the construc-
tion of multicanonical sampling distributions, which esti-
mates the sampling distribution on the basis of a histogram
of the transitions made between macrostates, in simulations
launched from macrostates chosen to ensure that thecom-
pleterange of the macrostate space of interest is probed from
the outset. In this paper~a short account of which has ap-
peared elsewhere@13#! we show that thistransition probabil-
ity ~TP! method can be applied effectively to the determina-
tion of a sampling distribution that is multicanonical along
an interphase path.

It has been customary to distinguish between two aspects
of the multicanonical program: theconstructionstage~just
discussed! is followed by autilization stage entailing further
sampling from the putative multicanonical distribution; ca-

nonical averages are then determined by reweighting@14# the
measured multicanonical averages to compensate for the bias
introduced by the multicanonical weights. The utilization
stage encounters a further problem: although the ergodic
time for the multicanonical distribution is not exponentially
large in the system size, it remains typically power law large,
reflecting the fact that the MC dynamics throughM space is
essentially diffusive, in the multicanonical limit. In some in-
stances this problem is acute: in the case of the particular
phase boundary studied here it appears in such an extreme
form that sampling over periods long compared to the er-
godic time is altogether impractical. However, we shall show
that the TP estimator of the multicanonical distribution can
be determined, to the accuracy required to deal with the in-
terphase problem, on the basis of simulationsshortcompared
to the ergodic time~they require equilibration only in a less-
exacting sense! and this problem is skirted.

To date, multicanonical methods have been utilized in
studies of phase coexistence in ferromagnets@9#, fluids @15#,
and lattice gauge theories@16#. In the present study we focus
on a problem ofstructural phase behavior. We consider a
model system of hard spheres with attractive interactions de-
scribed by a square potential well. This model is believed to
provide a qualitatively authentic description of the behavior
of polymer-colloid mixtures@17#. The hard spheres represent
the colloid particles; the square well models the depletion
potential of interaction between the colloid particles, medi-
ated by the polymer molecules; the range and strength of this
‘‘depletion potential’’ reflect, respectively, the polymer
length and concentration. Extensive MC studies@18#, sup-
ported by mean field calculations@19#, have shown that, as
the interaction range is reduced, the conventional liquid-gas
critical point moves in towards the triple point and the line of
liquid-vapor coexistence shrinks to zero, consistent with the
behavior observed in experimental studies of colloid-
polymer mixtures@20,21#. For still smaller ranges of poten-
tial ~in a regime that has as yet proved inaccessible to ex-
perimental work! the existing theoretical work@18,19#
predicts the appearance of a new line of phase coexistence,
stretching out from a triple point and again terminating in a
critical point, but now separating twosolid phases, with the
same symmetry~both are fcc!, but different lattice spacings;
this line of phase coexistence is the object of the present
study.

The motivation for this choice has three strands. First, the
system itself is clearly of sufficient intrinsic interest to war-
rant studies extending and corroborating existing work: the
square-well model provides the simplest context in which to
explore important general issues such as the conditions that
the interaction range has to satisfy if a liquid phase is to exist
at all @22#. Second, tackling the solid-solid phase boundary in
this system offers a sensible way to progress multicanonical
studies: while going somewhat beyond the problems pre-
sented by liquid-vapor coexistence, it skirts the distinctive
difficulties associated with melting and with solid-solid
phase boundaries involving a change in symmetry. Third, it
provides an appropriate context for comparing the multi-
canonical approach with established methods: the existing
MC studies exploit integration methods to relate the free
energy~the Helmholtz function! to that of a system of non-
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interacting hard spheres, whose free energy has been inde-
pendently calculated@23#.

The layout of the paper is as follows. Section II defines
the model, establishes the notation, and identifies the objec-
tives of the calculations that follow. Section III describes the
principles of our procedure for establishing a multicanonical
sampling distribution. MC implementation details are de-
scribed in Sec. IV. Section V presents the results of our MC
studies, designed to explore both the general principles of the
method and the particular physics of our model system, with
emphasis on the solid-solid phase boundary. Section VI con-
tains discussion and conclusions.

II. MODEL, NOTATION, AND OBJECTIVES

We consider a system ofN particles with spatial coordi-
nates$rW% and configurational energy

F~$rW%!5 (
i, j51

N

f~ urW i2rW j u!. ~1!

The pairwise interaction potential has a hard-core square-
well form

f~r !5H `, 0<r,s

2e, s<r,~11d!s

0, r>~11d!s.

~2!

The parameterd controls the range of the potential. The
existing MC studies@18# indicate that the liquid-vapor coex-
istence curve disappears ford&0.25 andthat a line of solid-
solid phase coexistence appears ford&0.06. Here we shall
focus on the behavior for the single valued50.01, for which
the existing data suggests@18# that the phase boundary ter-
minates at a critical temperatureTc.1.6 @24#.

Our simulation envisages particles confined in avariable
cubic volumeV, with periodic boundary conditions. Each
particle is associated with the site of a fcc lattice: by this we
mean that simulations are always initiated from fcc arrange-
ments and that studies of the pair correlation function~to be
reported below! confirm that crystalline order is preserved
under all the conditions studied. The crystallinity constraint
restricts the choice of particle number to the setN54m3,
with m integral; we have studied systems withN532, 108,
and 256 particles, to provide the basis for a finite-size scaling
analysis. The IM studies@18# were performed in a constant-
V ensemble, for systems ofN5108 particles, over a wide
range of values ofT, V, andd.

The canonical weight associated with theN particle coor-
dinates$rW% in volumeV5Nv, at temperatureT, and pres-
surep is prescribed by the probability density

Pc~$rW%,vuN,T,p!5
1

Z~N,T,p!
exp@2bpV2bF~$rW%!#,

~3!

whereb51/kT and the partition functionZ(N,T,p) is pre-
scribed by

Z~N,T,p!5E
0

`

dV)
j

F E
V
drW j Gexp@2bpV2bF~$rW%!#.

~4!

The two solid structures coexisting at the phase boundary
of interest are believed to differ simply by a homogeneous
dilatation. One may therefore choose as the order parameter
M the density or, equivalently~and our preference!, the spe-
cific volume v and—the true content of this ‘‘choice’’—
focus on the canonical probability density function~PDF! for
volume macrostates

Pc~vuN,T,p![)
j

F E
V
drW j GPc~$rW%,vuN,T,p!. ~5!

This probability density constitutes the natural microscopic
finite-sized counterpart of the Helmholtz free energy. Spe-
cifically, combining Eqs.~3!–~5! we find

2 lnPc~vuN,T,p!5bpV1bF~N,v,T!1 lnZ~N,T,p!,
~6!

where

F~N,v,T!52b21lnH)
j

F E
V
drW j Gexp@2bF~$rW%!#J

is the Helmholtz free energy for a system ofN particles,
whose thermodynamic limit identifies the free energy density

f ~v,T![ lim
N→`

1

N
F~N,v,T!. ~7!

From a thermodynamic perspective the conditions for the
coexistence of two phases, with specific volumesvA and
vB , are, first, the requirement of a common pressure

p52S ] f ~v,T!

]v D
vA

52S ] f ~v,T!

]v D
vB

~8!

and, second, the equality of the Gibbs free energy densities
g5pv1 f ,

@pv1 f ~v,T!#vA5@pv1 f ~v,T!#vB. ~9!

Microscopic, finite-sized counterparts of these conditions can
be realized in either of two principal ways. First one may
seek conditions under which the PDF~5! displays two
maxima, atvA andvB , of equal heights@25#. The condition
that vA andvB locate maxima gives, on appeal to~6!,

05Fp1
1

N

]F~N,v,T!

]v G
vA

5Fp1
1

N

]F~N,v,T!

]v G
vB

,

~10!

which gives the finite-sized counterpart of the common pres-
sure condition~8!. Similarly the ‘‘equal heights’’ require-
ment itself gives

Fpv1
1

N
F~N,v,T!G

vA

5Fpv1
1

N
F~N,v,T!G

vB

,
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which realizes the condition~9!, in the thermodynamic limit.
Alternatively one may establish the conditions under which
the PDF~5! displays two peaks ofequal weights@26#. The
saddle-point equations for the locations of the peaks~asymp-
totically sharp! give Eq.~10! again. Equating the weights of
the peaks gives

Fpv1
1

N
F~N,v,T!1

1

2bN
lnH ]2F~N,v,T!

]v2 J G
vA

5Fpv1
1

N
F~N,v,T!1

1

2bN
lnH ]2F~N,v,T!

]v2 J G
vB

,

which again yields the equal Gibbs densities condition~9!, in
the thermodynamic limit. Both equal-heights and equal-
weights conditions thus provide a valid basis for the identi-
fication of a phase boundary in a finite system, in the sense
that the results obtained will approach the correct limit for
largeN.

Deferring~until Sec. V C! the question of which of these
criteria is optimal, we see that the information required to
determine the relative stability of the two phases~along with
all properties that can be written as canonical averages of
functions of v only! is contained within the PDF
Pc(vuN,T,p). While thestructureof this PDF, in the vicin-
ity of its peaks, is readily determined by standard constant
N-p-T MC techniques@27#, the relativescaleof the peaks
~essential to both equal-heights and equal-weights criteria! is
not, because of the low canonical weight~we shall subse-
quently explore how ‘‘low’’! of v macrostates lying between
them. In principle, the solution to this problem is to construct
a non-Boltzmann sampling distribution for microstates, of
the form @cf. Eq. ~3!#

Ps~$rW%,vuN,T;$h%!5
1

Z~N,T;$h%!
exp@h~v !2bF~$rW%!#.

~11!

where $h% denotes a set of dimensionless ‘‘weights,’’ one
associated with each of the volume macrostates@28#. The
associated PDF for the volumePs(vuN,T;$h%) prescribes
the canonical PDF of interest, foranydesired pressurep, by
appeal to the reweighting@14#

Pc~vuN,T,p!}Ps~vuN,T;$h%!exp@2bpV2h~v !#
~12!

with the overall proportionality constant determined by nor-
malization. The task, then, is to construct an appropriate
sampling distribution~in effect, a set of weights!. The hall-
mark of such a distribution is simply that it can be estimated
accurately by MC simulation, so that the canonical distribu-
tion ~for the pressures of interest! can itself be determined to
the required accuracy, by the reweighting~12!.

III. ESTIMATING, REFINING, AND EXPLOITING
THE SAMPLING DISTRIBUTION

The task we have just identified has three elements. First,
one must define more explicitly the attributes of the sampling

distribution. Second, one must devise a scheme by which it
may be constructed. Third, one must exploit it.

In the approach to the phase-coexistence problem devel-
oped by Berg and Neuhaus@9# the target sampling distribu-
tion is chosen to bemulticanonical ~i.e., flat @29#! across
macrostate space. This choice is clearlyreasonablesince it
addresses the core of the problem presented by the canonical
distribution, namely, the low probability of macrostates on
the interphase path. While it is not clear that it isoptimal for
the task in hand, we shall also adopt it here; we shall finda
posteriori rationalization for this choice@30#.

The construction process itself has two aspects. One must
choose a method forestimatingthe ‘‘current’’ sampling dis-
tribution, that is, the sampling distribution associated with
one’s current ‘‘guess’’ at a multicanonical set of weights.
One must also choose an algorithm forrefining the distribu-
tion, that is, refining the set of weights to bring the sampling
distribution closer to the multicanonical ideal. We consider
these two aspects in turn.

In @9# the sampling distribution is estimated by counting
the visits to each macrostate in a MC exploration of that
distribution @the ‘‘visited states’’ ~VS! strategy#. Here we
adopt a different strategy@the ‘‘transition probability’’ ~TP!
method#, designed to use the information contained in mea-
surements of the frequencies of transitions between the dif-
ferent macrostates. The idea is explored in general terms
elsewhere@7#; we present it here in outline form and in the
specific context of the current problem.

Let a[@$rW%,v# label themicrostates of the system; the
microstates form a continuous set but, for simplicity, we
shall adopt a discrete and abbreviated notation in whichPa

s

represents the probabilityPs($rW%,vuN,T;$h%)dNrWdv. Let
i51, . . . ,Nm label themacrostatesassociated with a set of
volumes $v% with membersv i , which span the region of
potential interest, withPi

s5Ps(v i uN,T;$h%)dv the associ-
ated macrostate probability. Denote byri i 8

s (t) the transition
probability from macrostatei to macrostatei 8, at timet after
the initiation of a MC process designed to generate the cho-
sen sampling distribution. Then

ri i 8
s

~ t !5(
aP i

(
a8P i 8

Ps~au i !~ t !raa8
s , ~13!

whereraa8
s is the transition rate betweenmicrostates. By the

defining property of the MC procedure this microstate tran-
sition rate must satisfy the detailed balance condition

raa8
s

5ra8a
s

Pa8
s

Pa
s . ~14!

We shallimposethe further requirement that the conditional
probability in Eq.~13! has its stationary limiting form

Ps~au i !~ t !.Ps~au i !. ~15!

This condition presupposes that the microstates from which
macrostate transitions are attempted are selected with the
true sampling probability,for the given macrostate. The
most obvious way of fulfilling this condition is to ensure that
the position coordinates$rW% are always given time to equili-
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brate for the givenv @indeed, equilibrate to theircanonical
distribution, sincePs(au i )[Pc(au i ), because the weights
depend only on the macrostate coordinatev#. However, it is
helpful to note a less obvious alternative.If

~i! the initial macrostate is chosen to bei with probability
Pi
s and ~ii ! the initial microstate is chosen to bea with the

conditional probabilityPs(au i ) @so that Eq.~15! is satisfied
at t50#, then it is easily seen that Eq.~15! is satisfied at
t51, and subsequently. In effect conditions~i! and ~ii ! to-
gether ensure that the initial microstate is chosen with the
equilibrium sampling distribution and the detailed-balance
condition ensures that this remains so for subsequent mi-
crostates too. As we shall discuss in Sec. V A, it is growingly
easy to fulfill these conditions the closer the sampling distri-
bution comes to the multicanonical limit.

Now, returning to the main argument, we substitute Eqs.
~14! and ~15! into ~12! and appeal to the identity

Pa8
s

Pa
s 5

Pi 8
s Ps~a8u i 8!

Pi
sPs~au i !

to find that

ri i 8
s

~ t !5ri i 8
s

5ri 8 i
s
Pi 8
s

Pi
s . ~16!

This result shows that a MC estimate of the macrostate TP
matrix provides an alternative route to the sampling prob-
ability distribution. The potential advantages that this strat-
egy has with respect to the VS method reside in the fact that
it does not presuppose equilibrium over the space of mac-
rostates. Thus one may make use of simulations that are
targeted~through the choice of the initial macrostate! on spe-
cific regions of macrostate space, thereby allowing rapid
gathering of information even in the region of low canonical
weight. Moreover, one can bypass the ergodic problems that
persist through to the multicanonical limit: we do not need
simulations that extend for periods long compared to the
ergodic time. This point is crucial to the present studies; we
shall return to it.

An estimate of the sampling distribution provides the ba-
sis for refining its parameters~the second stage of the con-
struction process! to bring it closer to the multi-canonical
limit. The simplest scheme@9# takes an estimateP̃i

(n) of the
elements of the sampling distributionPi

(n) associated with a
particular set of weights$h (n)%[h i

(n) ,i51 . . .Nm , and gen-
erates a new set of weights$h (n11)% by

h i
~n11!5h i

~n!2 lnP̃i
~n!1const. ~17!

The constant is arbitrary@the sampling probabilities~11! are
invariant against a uniform increment of the weights#; we fix
its value by the conventionh i50 for i5Nm . The iterative
scheme~17! is by no means ideal: in particular it provides no
way of taking account of confidence levels in the existing set
of weights and in the estimator of the current sampling dis-
tribution. We have examined these issues elsewhere@7#;
however, here we shall use this basic scheme.

Iterating the two-component process we have described
~estimationof $P(n)% andrefinementof $h (n)%) completes the

construction stage; from it there emerges an approximately
multicanonical set of weights$h̃!% associated with an ap-
proximately multicanonical distribution with elementsP̃i

!.
const. We now proceed to consider how~and why! we use
this distribution. In principle Eq.~12! allows us to reweight
an estimate ofany sampling distribution, to provide an esti-
mate of the canonical distribution. In the abbreviated nota-
tion of this section we write the elements of the estimator,
derived from the estimator of thenth sampling distribution
in the form

P̃i
c} P̃i

~n!exp@2bNpv i2h i
~n!#. ~18!

In practice wechooseto make use of our estimate of the
multicanonical limiting distribution, determining our re-
weighted estimator by

P̃i
c} P̃i

!exp@2bNpv i2h i
!#. ~19!

To rationalize this choice we note the identity

h i
!5h i

~n!2 lnPi
~n!1const ~20!

relating the true multicanonical weights to the true elements
of the nth sampling distribution. Combining this result with
Eq. ~17! gives

lnP̃i
~n!2 lnPi

~n!5h i
!2h i

~n11! . ~21!

The faithfulness of the estimatorP̃(n) ~its closeness to the
true nth level distribution! is thus reflected in the closeness
of the (n11)th level weights to the multicanonical limit.
Thus evidence that a given set of weights needs further re-
finement isa posteriori evidence of deviations of the esti-
mate of the sampling distribution~used to establish those
weights! from the true sampling distribution. The iterative
process may thus be seen as producing a sequence of sam-
pling distributions, which are more reliably estimated the
closer they come to the multicanonical limit.

IV. IMPLEMENTATION OF THE MC PROCEDURE

Our simulations have been performed on the Connection
Machine CM-200, using a mixture of geometrical decompo-
sition and primitive parallelism to allowNr5O(103) inde-
pendent replicas to be run in parallel. The simulations com-
prise two kinds of update procedures: updates of the particle
coordinates, for a given system volume, and updates of the
system volume itself. We discuss these in turn.

The particle coordinates$rW% are updated using a standard
Metropolis algorithm@5#. Trial ‘‘new’’ coordinates are cho-
sen from within a sphere centered on the current particle
position; an update from coordinates$rW% to coordinates
{ r 8W } is accepted with probability

Pa($rW%→$r 8W } 5min@1,exp~2DE!#, ~22!

where

DE5bDF[b@F~$r 8W } 2F~$rW%!].
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To maintain the acceptance probability at appropriate levels
(;0.5) requires a value for the radius of the particle dis-
placement sphere of orderd/2, whered is the width of the
potential well Eq.~2!.

We now turn to the volume updates. We found it conve-
nient to restrict the values ofv explored to a discrete set
$v%[v i ,i51, . . . ,Nm , extending across the range of values
of potential interest.~We shall discuss the spacing between
the members of this set below.! Changes in volume are most
conveniently realized as homogeneous dilatations that pre-
serve the scaled coordinates

sW[L21rW with L[~Nv !1/3. ~23!

In a volume transition a candidate ‘‘new’’ volumev j is cho-
sen with equal likelihood from the two members of the set
$v% adjacent to the current volumev i ; the acceptance prob-
ability is computed according to the Metropolis algorithm
@31#

Pa~v i→v j !5min@1,exp~2DE!#, ~24!

where

DE[bDF̂2Dh2ND lnv, ~25!

with

F̂[F̂~$sW%,v ![F~$LsW%!,

Dh[h~v j !2h~v i ![h j2h i .

The final term in Eq.~25! reflects the Jacobian of the trans-
formation from$rW% to $sW% coordinates in the partition func-
tion ~4!.

The acceptance probability for volume transitions is
strongly dependent on the volume step size: since a trial
volume change resulting in even a single hard-core overlap
will be rejected, only ‘‘small’’ volume changes have a rea-
sonable chance of being accepted. The step size
Dv[v j2v i must therefore be correspondingly small. Since
the extent of the problem varies with the density~it is most
acute at high densities!, so must the step size in order to keep
the acceptance probability roughly constant over the range
covered by the set$v% @32#. We constructed suitable sets
~maintaining acceptance probabilities close to 0.5) guided
partly by experiment and partly by simple statistical argu-
ments. ForN5256, for example, the chosen set$v% com-
prised Nm;33103 members with spacings ranging from
Dv.1025 ~near v150.7171 @24#! to Dv.1024 ~near
vNm50.818). As we shall see, the need to handle large val-

ues ofNm is a key feature of this problem.
The two update procedures we have described are com-

bined to give the following MC program, allowing one to
estimate the macrostate probabilities associated with a given
sampling distribution. Each replica simulation~RS! is initial-
ized with the particles assigned to the sites of a fcc lattice,
with volume chosen randomly from the set$v%. Each RS is
equilibrated using the constant-volume updating scheme for
the spatial coordinates$rW% specified in Eq.~22!. Each RS is
then allowed to undergo ‘‘volume’’ transitions~dilatations!
following the algorithm~24!. Each volume transition is fol-

lowed by a furtherNe updates of the spatial coordinates
alone to allow equilibration within the new volume mac-
rostate. The procedure~volume update followed by coordi-
nate equilibration! is repeatedNc times for each RS, pooling
the records of all volume transitions from allNr replicas in a
histogram. We denote the elements of the histogram gathered
at sampling stagen ~i.e., that associated with a MC proce-
dure with sampling distribution characterized by weights
$h (n)%) by Ci j

(n) . The elements of this histogram provide es-
timators r̃ i j

(n) for the elements of the associated macrostate
TP matrixri j

(n) @33#:

r̃ i j
~n!5

Ci j
~n!11

( j~Ci j
~n!11!

. ~26!

EstimatorsP̃i
(n) of the macrostate probabilitiesPi

(n) can then
be determined by appeal to Eq.~16!. Since the TP matrix is
tridiagonal, this equation is readily solved by a simple itera-
tive scheme. In the first one or two iterations the sampling
probabilities span many orders of magnitude and it is neces-
sary to work with the logarithm ofP̃ i

(n) to prevent arithmetic
overflow. To limit the buildup of rounding errors it is neces-
sary to use Eq.~16!. to generate the probabilitiesP̃i

(n) in
increasingorder. If one attempts to generate the macrostate
probabilities indecreasingorder, the uncertainties in the re-
sulting estimates become unacceptably large once one has
traversed six or seven orders of magnitude~postponed to 14
with double precision arithmetic!.

The precision of the estimator that emerges is controlled,
predominantly, by the numberNc of the transitions recorded.
It is illuminating to have somea priori estimate of the value
to be assigned to this parameter. To that end, let

Q[
Pa
s

Pb
s ~27!

denote the ratio of the probabilities of two macrostates
i5a and i5b, at the extremes of$v% space~lying close to
the modes associated with the two phases!, for some sam-
pling distributionPs. Our objective, in this problem of phase
coexistence, requires that we determine the ratioQ to within
a fractional uncertainty of order unity:

dQ

Q
;O~1!. ~28!

Given Eqs.~6! and ~7!, this condition is equivalent to the
requirement that the difference between the Helmholtz free
energydensitiesof the two phases is determined to within
correctionsO(1/N), which are comparable with the finite-
size corrections we must generally expect to contend with.
Now, appealing to Eq.~16! we may write

Q5 )
i

Nm21

qi where qi5
r̃ i ,i11

s

r̃ i11,i
s

. ~29!

If we neglect correlations among the variablesr i , we may
then implement the requirement~28! in the form
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1;
dQ

Q
;ANm

dq

q
;ANm

Nv
,

where

Nv;
NrNc

Nm

is the mean number of visits per macrostate@34#. Combining
these two results, we conclude that the precision demanded
in Eq. ~28! requires that

Nc;
Nm
2

Nr
. ~30!

This result provides not only a practical guide to the pa-
rameterization of the MC procedure but also an immediate
insight into the advantages of the TP estimator~relative to
the VS estimator! of the sampling distribution. Use of the VS
estimator presupposes a simulation that extends over times
that are at least comparable with the interphase-crossing
time. Even in the multi-canonical limit, where this evolution
is diffusion limited rather than barrier limited, this implies a
number of stepsNc throughv space of orderNm

2 . This con-
straint applies toeachcontributing replica. Thus, while the
large values ofNr falling within the compass of parallel
computers such as the CM-200 enhance the statistics gath-
ered over such a period, they do not allow us to reduce this
period itself, within the VS framework@35#. Given the need
to handle large values ofNm—as we have seen, an unavoid-
able corollary of the hard-core potential—the VS strategy is
then quite impractical here@36#. In contrast, Eq.~30! shows
that in the TP method the simulation time required is reduced
by of order 1/Nr . In this approach, each replica simulation
typically explores only a small region of macrostate space;
the method provides a simple framework within which the
information that each simulation provides~about the relative
probabilities of macrostates in the region it samples! can be
pooled to provide an estimator of the sampling distribution
for the whole macrostate space.

V. RESULTS

A. The multicanonical sampling distribution

We proceed to explore the results emerging from the pro-
cedure described in the preceding section, focusing first on
the generation of the multicanonical sampling distribution.
Figure 1 shows the results of the weight-generation proce-
dure for a system ofN532 particles, at a temperature
T51.1 expected to lie below the critical temperature for
solid-solid phase coexistence@18#. The first level weights
$h (1)% are set to zero~the initial sampling distribution is
canonical!. The general structure of the multicanonical
weights over the entire region is apparent already after one
iteration; convergence to a form very close to a fixed point of
Eq. ~17! is achieved within seven or eight iterations requiring
only about 25 min of CM-200 processing time. Further con-
vergence is secured in the course of the final ‘‘production-
and-refinement’’ iterations described below. The shape of
the weight functionh(v) is recognizable as that of the Helm-

holtz function for a finite-sized system, a correspondence
that is implied by Eqs.~6! and ~12!, in the multicanonical
limit @37#. The same procedure is practicable on larger sys-
tems: forN5108 anab initio determination of multicanoni-
cal weights~spanning 125decadesof probability! required
some 2 h ofCM-200 processing time. The procedure can be
streamlined by using a finite-size-scaling~FSS! estimate of
an initial set of weights@38#; typically we found that this
FSS estimate is quite close to the multicanonical limit~the
discrepancy gets larger with increasingT), so only one or
two iterations are required before it is possible to move to the
production-and-refinement stage.

The results shown in Fig. 1 exploit the TP estimator of the
sampling distribution. To illuminate the workings of the TP
method~and to contrast it with the VS approach! we show,
in Fig. 2, histograms of the counts of macrostate visits~ac-
cumulated over allNr replicas! during ~a! an early and~b! a
late stage in the iterative weight-generation process. These
results arenot used in the weight update procedure. The
purpose of showing Fig. 2~a! is to emphasize that the VS
histogram initially provides virtuallyno useful information
about most of the macrostate space~it does pick up a local
attractor in the low-v regime!. The structureless form of the

FIG. 1. Multicanonical weightsh (n)(v) for various iterations
n, with N532, T51.1 @24#; the arrows identify the bounding vol-
umes in the set$v%. The MC control parameters areNc5250,
Nm5237, andNr54096. The inset shows a detail of the high-
density region. The units are specified in@24#.

FIG. 2. HistogramsH (n) of the volume macrostates visited at
sampling stages~a! n52 and~b! n513 in the course of the weight
generation shown in Fig. 1. The units are specified in@24#.

6536 53G. R. SMITH AND A. D. BRUCE



histogram simply reflects the fact that the various replicas
have evolved relatively little from their initial states in the
course of the simulation. The ‘‘useful information’’ resides
in the flow through macrostate space~the macrostate transi-
tions!, not itspopulation. Figure 2~b! shows that a late-stage
histogram isconsistentwith multicanonical behavior; but
this ‘‘consistency’’ is less than meets the eye. Again each
replica has typically migrated across only a small part
(;1/30) of v space; the flatness of the histogram is thus a
reflection of the initially uniform distribution of the replicas
over this space. The relatively large fluctuations are also tes-
timony to the strong correlations within each RS.

Next, let us consider the MC control parameters associ-
ated with the TP procedure. An indication of the interplay
between the parametersNc , Nr , andNm is provided by Eq.
~30!. In fact, the results for various test runs imply that the
algorithm is robust down to a value ofNc rather smaller even
than this. Moreover, there are effects@which Eq. ~30! does
not capture; cf.@34#.# that actuallyreducethe efficiency of
the procedure asNc is increased. In the early stages of the
procedure~when the sampling distribution is far from multi-
canonical! the low-v macrostates tend to empty relatively
rapidly. It is advantageous to setNc low enough to preempt
this process in order to avoid the need to reinitialize and
reequilibrate the replicas, prior to gathering information for
the next iteration.

Consider now the role ofNe , the number of constant-
volume coordinate-updating sweeps~through all replicas! al-
lowed between volume-update attempts. Figure 3 shows the
evolution of the weights for three different values ofNe ,
over the early stages of the iterative procedure. It is clear that
increasing the time devoted to equilibration betweenv up-
dates increases the speed of convergence to the multicanoni-
cal limit. The principle here is easy to identify: the larger
Ne is the closer one comes to satisfying the condition on the
macrostate transition probability matrix@Eq. ~15!# implicit in
Eq. ~16!; the better the TP estimator of the current sampling
distribution is, and the closer@cf. Eq. ~21!# the implied
weights are to their multicanonical limit. To understand the
behaviour in more detail, in particular, why it is that the TP
estimator continuallyunderestimatesthe change in weights
required to reach the multicanonical limit, it is necessary to
consider what is occurring physically in the simulations.
Suppose first thatNe is sufficiently large that equilibrium at
eachv is established and compare the transition probabilities
of dilations and contractions. Transitions that increasev can

be made relatively freely since a dilation introduces no hard-
core overlaps, but transitions that decreasev are likely to be
suppressed by the occurrence of such overlaps. Now suppose
thatNe is reduced so that equilibration at eachv is incom-
plete. While dilations are hardly affected, moves to lower
volume becomemoreprobable: to the extent that equilibra-
tion is imperfect, the scaled particle coordinates~i.e., the set

$sW%, defined in Eq.~23!# are preserved through to the next
v update and a lowerv macrostate may be recovered by a
transition that reverses a preceding dilation and thereby ef-
fectively restores an earlier microstate. It follows that, in
these circumstances, the ratior̃ i ,i11

s / r̃ i11,i
s is underesti-

mated, as is then the sampling probability gradient@cf. Eq.
~29!#, and thence the change to be made to the weights@cf.
Eq. ~17!#.

Of course, while increasingNe decreases the number of
iterations required to reach near-multicanonical behavior it
increases the time required for each iteration. We have not
sought to establish the optimal conditions, but we expect
efficiency gains from tuningNe to be relatively small.

Now let us turn to the later stages of the iterative proce-
dure. For large enoughn (n.8 in Fig. 1! we reach a situa-
tion where the noise in the TP estimator drowns any remain-
ing signal that the multicanonical limit has not been fully
realized and the weights undergo only random fluctuations
between iterations. At this point we move into the second
~production-and-refinement! stage of the procedure. In this
stage the advantages of low values ofNc noted above do not
apply; accordingly it is reset to substantially higher values,
typically of the order of a few thousand rather than a few
hundred, per iteration. We continue to update the weights
after each iteration, using the TP estimator of the current
sampling distribution, but we also use this TP estimator, in
conjunction with the current set of weights, to provide an
estimate of the canonical distribution~for a pressure, or pres-
sures, or interest!, using the reweighting prescribed by Eq.
~12!. Thus we accumulate estimates of the canonical distri-
bution from which, at the end of the simulation, we produce
a ‘‘best estimate’’ ofPc, together with its uncertainty@32#.

We have seen that the parameterNe controls the quality
of the TP estimator of the sampling distribution~and thence
the rate of convergence of the weights! in the early stages of
the procedure. It is important to establish what effects it has
on the quality of the later estimators. To do so we ran a series
of simulations employing a sampling distribution associated

FIG. 3. Convergence of the weights over iterationsn52, . . . ,5, for different values ofNe . Other parameters are as in Fig. 1.
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with a refined set of multicanonical weights~in the particular
caseN532, T51.1). These simulations each performed the
same number of volume updates, but varied in the value
assigned toNe . TP estimators of the sampling distribution
were formed in each case and new values of weights com-
puted in the usual way@by appeal to Eq.~17!#; the procedure
was repeated~without weight updating! to provide uncertain-
ties on the predicted new weights. We found that the ‘‘new’’
weights did not differ systematically from the ‘‘refined’’ es-
timate: the estimate of the sampling distribution is relatively
insensitive to the value assigned toNe , in the multicanonical
limit. To see why this should be so we need to recall the
alternative way of securing the validity of Eq.~15!, ex-
pressed in the two conditions noted following that equation.
While the second of these conditions~equilibration within
the starting macrostate! is always fulfilled, the first is not; it
is, however, fulfilled more closely the closer the sampling
distribution comes to the multicanonical limit, because, in
this limit, our ‘‘random’’ set of initial v macrostatesdoes
match the~flat! sampling distribution. Full~multicanonical!
equilibrium is secured initially and preserved; Eq.~15! is
satisfied without further intervention.

B. The canonical distribution: Initial applications

We now turn to the results for the canonical distribution
and the physical properties that it defines. In this section we
present the results for one particular system size (N5108);
the size dependence~finite-size scaling! of our results is ex-
amined separately in the following subsection.

Figure 4 shows the results for the canonical PDFPc(v) at
T51.1, for a range of pressuresp. Two ranges of pressures
are clearly identified. Pressures in excess ofpcx.29 support
a dense structure, characterized by a relatively sharp peak
aroundv.0.719; pressures belowpcx support an expanded
structure, with a substantially broader peak~note the differ-
ent scales in the two figures! at higherv. The incipient dense
structure is just discernible atp529, in Fig. 4~b!

Figure 5 provides an alternative perspective of the canoni-
cal PDF, at three pressures, including a refined estimate of
the coexistence pressurepcx , identified by the equal-weights
criterion~cf. Sec. II!, for reasons to be discussed in Sec. V C.
below. The inset shows the low canonical weight of mac-
rostates along the interphase path; in some applications~for
largerN and lowerT) we have used the TP method to evolve
distributions surmounting probability differentials of 260 de-
cades.

On the face of it, the error bars on the PDFs in Figs. 4 and
5 are substantial@the fractional uncertainties in the PDFs are
O(1)#. However, the bulk of this uncertainty originates in
uncertainties in the relative weights of the two phases; the
shapes of the peaks ofPc are individually well outlined and
single-phase averages~i.e., averages calculated over the
peaks separately! are substantially more precisely defined
than these error bars might suggest. Moreover, as we have
discussed@cf. remarks following Eq.~28!# theO(1) uncer-
tainties are, in fact, consistent with the determination of the
free energy density~and thus the parameters of the coexist-
ence curve! to within O(1/N) corrections.

The differences between the two phases, already visible in
Figs. 4 and 5, are made more explicit in Fig. 6, which shows
the specific volume@Fig. 6~a!# and the compressibility@Fig.
6~b!# as functions of the pressure. Both quantities are evalu-
ated from the canonical averages~of the volume and its fluc-
tuations! over the range ofv associated with the phase that is
favored at the pressure under consideration.

C. Finite-size scaling

To establish~and optimize! the extent to which the MC
procedure captures the limiting~large-N) behavior of ulti-
mate interest requires a systematic analysis of theN depen-
dence of the results. Figure 7 shows the results for the vol-
ume PDF, for various system sizes, atT51.0. In each case
the PDF has been evaluated at the pressure~an estimator for
pcx) that accords equal weights to the two phases. The sharp-
ening of the peaks with increasingN is apparent and is also
reflected in the behavior of the canonical average of the spe-
cific volumev, as the pressure is varied through the coexist-
ence region, shown in Fig. 8~a!. In contrast to Fig. 6~a!, these
averages were taken over the entire sampling distribution, at
a givenp, in order to display more clearly the growing pre-
cision with which the coexistence pressure is defined.

Now let us consider the merits of the different estimators
of the coexistence boundary, discussed in Sec. II. Figure 8~b!
shows theN dependence of the estimators forpcx ~at
T51.0) based on both the equal-weights~EW! and the
equal-heights criteria. Although the limited range ofN val-
ues studied allows no definitive conclusions to be drawn, the
data suggest thatbothestimators are subject toO(1/N) cor-
rections with respect to the thermodynamic~infinite-volume!
limit. The least-squares fits to both sets of data~dashed lines!

FIG. 4. Canonical PDFPc(v) for N5108,
T51.1, at various pressuresp. The PDF was
smoothed using a moving average over a window
of 50 v states; some typical error bars are shown.
The two figures show, respectively, the peaks
corresponding to~a! the dense phase and~b! the
expanded phase. The units are specified in@24#.
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are equally good and both have the same intercepts, within
error. The ordinate intercepts, which are the best estimates of
the infinite-volume transition point, are both consistent with
the assignmentpcx522.78(6).

The question of which of the two estimators is the more
appropriatea priori has attracted considerable attention. Ar-
guments based on cluster expansions@39#, supported by em-
pirical analysis of MC data@39#, have provided strong evi-
dence that, at least for lattice models with periodic boundary
conditions, the EW estimator is to be preferred in that it is
correct to within terms that areexponentiallysmall in the
system size. It is not clear to us what these arguments imply
~if indeed they are applicable at all! to the off-latticeN-p-
T ensemble explored here. We choose to adopt the EW es-
timator, in part because it does appear to give the smaller
corrections and in part because it seems to us to be the more
natural choice.

It is of interest to explore the system-size dependence of
the canonical probability of macrostates lying on the inter-
phase path. With this in mind, letQ![Pmax

c /Pmin
c denote the

ratio of the canonical probabilities of two macrostates, one
coinciding with a maximum ofPc(v) ~in practice we chose
the maximum associated with the expanded phase! and the
other associated with the minimum ofPc(v), lying between
the two maxima. This ratio measures the probability differ-
ential ~‘‘free energy barrier’’! that the multicanonical
weights are designed to offset. Figure 9 shows its behavior as
a function of system sizeL[V1/3, for temperatureT51.0.
The result is somewhat unexpected. One might anticipate
that the macrostates along the interphase path would be
dominated by mixed-phase arrangements, comprising macro-
scopic regions of each of the two phases, separated by an
interface, with an area of orderLd21[L2. This viewpoint
leads immediately to the prediction lnQ!;L2. This prediction
is certainly consistent with studies of lattice-based models,
for which it has been exploited to provide a measurement of
the interface tension@40,41#. However, the behavior mea-
sured here is much closer to lnQ!;L3. The reason for this
difference is that, at least in the systems we have studied, the
interphase states do not appear to be inhomogeneous in the
way the above argument envisages: examination of the dis-
tribution of free volume along the interphase path shows that
these states are no less homogeneous than those that domi-
nate the peaks in the PDF. In part this may simply be a
reflection of the relatively small system sizes we have been
able to study: in this regime the ‘‘interfaces’’ separating the
two phases have not only to patch one structure to the other,

but also to absorb the additional strains~relatively signifi-
cant, for small systems! imposed by the requirement that the
overall structure can be accommodated in a cubic sampling
volume.

D. Phase diagram

We now turn to consider the solid-solid phase boundary
in more detail. We have used the techniques described in
previous sections to evolve multicanonical sampling distri-
butions, and thence TP estimators for the canonical volume
PDFS, over a range of temperatures~from T51.0 up to the
vicinity of the critical point believed to lie aroundT.1.6
@18#! and system sizes (N532,N5108, andN5256). Fig-
ure 10 shows some of the results, for systems of size
N5108, at the coexistence pressure~for the corresponding
N and T) determined by the equal weights criterion. With
increasingT, the canonical probability of the region between
the two modes increases and the modes merge together. For
N5108 the PDF becomes unimodal aroundT51.7; for
N532 the merger occurs at lower temperature. Clearly,
implementation of the equal-weights criterion becomes pro-
gressively harder as one moves into this regime. To identify
the equal-weights pressure we used an arbitrary division of
the range ofv at or near the point wherePc is minimal,
although a fitting of two overlapping Gaussians is arguably

FIG. 5. Canonical distribution functionPc(v) for N5108,
T51.1, at pressuresp570 ~solid line!, p525 ~dashed line!, and
p530.1960.125pcx ~circles!. The inset shows a detail in the re-
gime of intermediate density. The units are specified in@24#.

FIG. 6. Canonical expectation values for a
system with parametersN5108, T51.1, as a
function of the pressurep. ~a! The specific vol-
umev[V/N; the two data points represent esti-
mates of the specific volume of each phase, at
coexistence.~b! The isothermal compressibility
kT ; note the logarithmic scale on the ordinate.
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more appropriate. To assign values to the specific volumes of
the two phases, in this region, we simply used the location of
the modes to provide finite-size estimators. The finite-size
estimators ofpcx and the specific volumes were then ex-
trapolated to give estimates of their thermodynamic limits.

The results are represented in Figs. 11~a! and 11~b!,
which show, respectively, the phase boundaries in thep-T
and T-v planes. These figures also show the results estab-
lished independently@18,42# using integration methods, on a
system of sizeN5108. There is good agreement between the
two estimates of thep-T coexistence curve; discrepancies
are at most of the order of 1% and are generally within the
error bars on the multicanonical points. The agreement in the
location of the phase boundary in thev-T plane is also fairly
good, though there are more obvious differences over the
specific volume of the expanded solid—differences that
grow with increasing temperature. There are several possible
origins for these discrepancies. In part they may reflect the
difference between the equal-heights and equal-weights cri-
teria: the double tangent construction used in the integration
method is, implicitly, an equal-heights estimator. Another
contributory factor is theN dependence of the canonical PDF
at coexistence, in particular the shift in the expanded-phase
mode to lowerv asN increases~cf. Fig. 7!. Third, one might
expect that the appeal to a hard-sphere solid reference system
becomes more problematic the closer the physical system is
to criticality: the typical configurations of the physical sys-
tem and the reference system~which does not have a critical
point! will become less well matched and the errors in the
integration method harder to control.

Taken at face value, our results suggest that the critical
temperature is rather lower than that implied by the IM re-
sults. However, to handle the critical region adequately it is
necessary to appeal to a more sophisticated finite-size scaling

framework, along the lines of that applied to the study of
liquid-vapor coexistence@43#, which have been developed to
yield results of remarkable precision@15#. To do so would,
we believe, be relatively straightforward.

E. Coexisting phases: A comparison

Finally, we turn to a comparison of the two solid phases
and to consider the physical basis of their coexistence. First,
we present the evidence corroborating that the structure of
both phases is indeed fcc. Figure 12 shows the measured pair
correlation functionG (r ), at coexistence~for N5108,
T51.1). In both phasesG (r ) exhibits well-defined peaks at
positions~increasing asAm, with m the peak index! charac-
teristic of a fcc lattice. The discontinuities inG (r ) ~apparent
in the inset! can readily be traced to corresponding disconti-
nuities in the potential 2, atr /s51 and r /s511d. The
measured discontinuity atr5(11d)s[r o is consistent with
the requirement that

lim
Dr→01

G ~r 01Dr !

G ~r 02Dr !
5e1/T.

To illuminate the circumstances in which the two phases
coexist, we consider the elements of the Gibbs free energy
densityg5 f1pv5e2Ts1pv, wheree is the energy den-
sity ands the entropy density. The form of the Helmholtz
function f (v) can be deduced from the measured canonical
PDF for v, by appeal to Eq.~6!; the energy density is mea-
surable directly, as a canonical average; the entropy density
can then be inferred. Figure 13 shows the three contributing
elements (e, s, andpcxv) for N5108 atT51, together with
the Gibbs functional itself. The elementss, pcxv, andg have
been arbitrarily shifted vertically so that they equal zero at

FIG. 7. Canonical PDFPc(v) for T51.0 and
three different values ofN, showing separately
~and on different scales! the regions correspond-
ing to ~a! the dense phase and~b! the expanded
phase. The units are specified in@24#.

FIG. 8. Finite-size behavior forT51.0 The
IM data are taken from@18#. ~a! The behavior of
^v& as function of pressurep, nearpcx . ~b! The
coexistence pressure determined by equal-
weights~EW! and equal-heights~EH! criteria, for
different values ofN. The dashed lines represent
least-squares fits to the data and share the ordi-
nate interceptp522.78(6).
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the lowestv studied. The differences between the values of
each element ofg for the two phases~i.e., evaluated at the
estimators of the two specific volumes atT51) are repre-
sented by the arrows; to withinO(1/N) corrections they sat-
isfy the conditionDe2TDs1pcxDv50.

The energy has a close-packed (v50.707) limit of
e526; it begins to increase rapidly above this limit at
v.0.717, where particles begin to lie outside the potential
well of a significant fraction of their neighbors. It exhibits a
point of inflection, close to the point
v5(11d)3/A2'0.7285 at which the energy of a fully or-
dered (T50) crystal would step frome526 to e50, under
a homogeneous dilation. Theentropymust display a loga-
rithmic singularity in the close-packed limit; it increases
steeply through the region characteristic of the dense solid,
but itscurvatureis less than that of the energy. By contrast,
in the rare-phase region the reverse is true:s(v) exhibits the
dominant curvature. The results express quantitatively what
is qualitatively cleara priori: the dense phase owes its exist-
ence to, and its properties are dominated by, energetic con-
siderations; for the rare phase, entropic factors are dominant.
Note that the underlying Helmholtz function does not display
the fully convex behavior required in the thermodynamic
limit; the hump in the free energy functionalg, straddling
the interphase region, must be attributed to finite-size effects,
which will persist until one reaches the regime ofL values
large enough that~cf. Sec. V C! lnQ!;L2.

As the temperature is raised towards the critical point, the
functionss(v) ande(v) change relatively little; the evolu-
tion of the properties of the phases reflects, principally, the
temperature-induced shift in the balance between entropy
and energy: the low-v dominance of the energy is reduced
and the high-v dominance ofs enhanced, and the change-
over between these regions occurs at lowerv. This accounts
for the key features observed: the dense phase becomes more
compressible, the expanded phase less so, and the two phases
coalesce as the specific volume of the rare phase falls.

For lower temperatures, on the other hand, the influence
of the energy persists to higherv, pushing up the specific
volume of the expanded phase and eventually taking the sys-
tem into the region~below the triple point! where the ex-
panded phase is unstable with respect to the liquid phase,
which we have not explored in this work.

VI. DISCUSSION AND CONCLUSIONS

Although the system we have chosen to study in this pa-
per is of considerable interest in its own right, this work has
been principally concerned withgenericissues arising in the
MC study of phase behavior. These will remain the focus in
our final discussion, which we shall organize into two stages.
First we shall review the particular~transition-probability!
implementation of the multicanonical method, developed and

FIG. 9. Height of the interphase barrier measured by the ratio
Q! for systems of linear dimension L52,3,4 ~with
N532,108,256, respectively! atT51.0. The dashed line represents
a least-squares fit to the data and has a gradient of 2.91~1!.

FIG. 10. Canonical PDFPc(v) for N5108 and a range ofT
values, at the corresponding coexistence pressure. The inset shows
the dense phase on an expanded scale. The units are specified in
@24#.

FIG. 11. Solid-solid phase boundary in~a!
P-T and ~b! T-v space. The data points are pro-
duced by extrapolatingN532 andN5108 ~and
for T51, N5256) data against 1/N. The dashed
line shows thermodynamic integration results for
an N5108 system@18,42#. The units are speci-
fied in @24#.
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applied here. Second, we shall compare the multicanonical
approach to the study of phase boundaries with the tradi-
tional MC method based on integration along a path.

The TP estimator of the sampling distribution provides a
tool that, we believe, should prove of rather general value in
multicanonical studies. It addresses two key problems. First
it allows one to begin to gather information about the whole
of a targeted range of macrostate space, virtually from the
outset of the procedure; in this respect it offers significant
advantages with respect to VS, which is slow to deal with
poorly sampled regions and vulnerable to inaccurate initial
guesses at the values to be assigned to the weights. Second,
it provides a way of addressing the residual ergodicity prob-
lems posed by the task of estimating a near-multicanonical
distribution. The TP method allows one to combine the in-
formation obtained through a number of simulations, each
exploring only a limited range of macrostate space and each
therefore requiring a simulation time much smaller than the
ergodic time. The method thus allows one to capitalize on
computing architectures that allow many replicas to be run in
parallel.

At this juncture we should note that the method we have
described bears some resemblance to the method of multi-
stage sampling@44#. If implemented in the present context,
this approach would also utilize a set of simulations; each
simulation would be constrained to walk~possibly multica-
nonically! within a narrow section of the full range of mac-
rostates, overlapping with its neighbors. From a VS histo-
gram, the PDF of the order parameter, within each section,
would then be estimated, and by imposing continuity be-
tween the sections, the PDF could be reconstructed for the
whole range of macrostates. Despite the similarities, the mul-
ticanonical approach retains several advantages. To use mul-
tistage sampling, we must decidea priori how to divide up
the range of macrostates: how wide each section should be
and how much it should overlap with its neighbors. We also
must decide how to match the results from the various his-
tograms, perhaps using just the overlapping states or perhaps
a function fitted to the whole histogram. The use of the
single pooled histogram of macrostate transitions in the TP

approach handles all of this transparently. Moreover, to al-
low full equilibration ~in the VS sense! over the range of
macrostates in each section of the multistage sampling simu-
lation would require that each section should contain sub-
stantially fewer macrostates even than are explored by one of
the multicanonical replicas in the course of its run, thus re-
quiring correspondingly more independent simulations.

As a final remark on the TP method, we note that the
same approach may also be applied to determine the weights
associated with the subensembles that feature in the ex-
panded ensemble techniques developed by Lyubartsevet al.
@11# and Marinari and Parisi@12#.

Now let us turn to compare the multicanonical approach
to the phase-boundary problem with the established integra-
tion methods. It is undeniable that, as Frenkel has argued@6#,
the IM approach is commendably simple, requiring little or
no extension beyond the framework~for the evaluation of
canonical averages! needed for the basic MC procedure.
Nevertheless, the principal obstacle to any extended-
sampling approach—the absence of asystematicway of
building the desired sampling distribution—seems now to be
surmountable and the multicanonical strategy is correspond-
ingly more viable. It has some attractive features. First, in
our view, it provides a framework in which MC error bounds
are more readily assessed and controlled. The error bounds
inherent in IMs are clouded by uncertainties about the influ-
ence of the integration-parameter spacing. Second, the
method requires no appeal to a reference system~or systems!
and is thus free of the additional uncertainties that may arise
in the IMs when the integration path has to connect systems
with grossly different configurational structure, in particular
when the path has to traverse a near-critical region. Third,
the multicanonical MC method surely provides the better
framework for handling the subtle finite-size effects associ-
ated with critical points. Finally, it is couched in terms—

FIG. 12. Pair correlation functionG (r ) for N5108, T51.1.
The inset shows detail at smallr . Full line, dense phase; dashed
line, expanded phase.

FIG. 13. Contributions to the free energy density atT51.0. The
entropy densitys, the Gibbs densityg, and the contributionpcxv
have been translated by arbitrary constants so that they are zero at
the low end of the range ofv explored, shown by the dotted vertical
line. The dashed vertical lines identify estimators of the specific
volumes of the coexisting phases atT51.0; the filled symbols iden-
tify the values of the free energy contributions for these values of
v. The units are specified in@24#.
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probability distributions rather than free energy functions—
that relate most directly to what is actually measured in MC
studies.

Nevertheless, it remains to be seen whether the multi-
canonical strategy will prove as versatile as the integration
approach. In particular~a commentary on the limitations of
the present study@45#! it remains to be seen whether it can be
developed to deal directly with the phase boundaries~such as
that between solid and liquid or between two solids of dif-

ferent symmetries! that involve more complex changes of
microstructure.
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